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ELASTIC-PLASTIC TORSION AS A PROBLEM IN
NON-LINEAR PROGRAMMING*

PHILIP G. HODGE, JR.

Department of Mechanics, Illinois Institute of Technology

Abstract-For a simply connected region, it is shown that the problem of determining the elastic-plastic stress
function is equivalent to that of minimizing the complementary energy subject to the inequality constraints
required by the yield condition. A method is proposed for approximating this minimum in which the cross section
is approximated by a finite number of triangles and a linear stress function is assumed for each triangle. This
approximate problem is then solved by means of a recently available computer program for solving nonlinear
constrained minimization problems.

STATEMENT OF THE PROBLEM

WE consider a simply connected cylindrical or prismatic bar which has a cross section A
bounded by a curve C, and take the X3 axis to be parallel to the generators of the bar. Then,
as is well known, the complete state of the bar under Saint Venant torsion is defined by the
two non-vanishing stress components CT31' CT 32 and the warping function w, all quantities
being functions of Xl and X2'

To formulate the problem in dimensionless terms, let B denote a typical length in the
cross section, L the length of the bar, k the material yield stress in pure shear, and G the
elastic shear modulus. Dimensionless coordinates are defined by

X = xtiB

and a dimensionless angle of twist by

(1)

e = 2GBIY../k (2)

IY.. being the twist per unit length.
For any material, equilibrium requirements in the interior and on the boundary are

automatically satisfied if the stresses are derived from a dimensionless stress function l/J by

where

CT31 = kat/!/ay, CT 32 = - kat/!lax (3)

and

t/! is continuous and piecewise continuously differentiable in A (4)

t/!=O on C. (5)

• Presented without publication at the Fifth U.S. National Congress of Applied Mechanics, University of
Minnesota, Minneapolis, Minn., June 14-17, 1966. This investigation was supported by the U.S. Office of Naval
Research.
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If the material is elastic-perfectly-plastic and the angle of twist is non-decreasing, the
stress function must satisfy the further conditions [IJ

IVt/J1 ~ I in A (6)

if IVt/J1 < I, v 2 t/J+e = 0 in A (7)

t/J continuously differentiable in A. (8)

For a perfectly elastic material, equation (6) and the condition in equation (7) are
irrelevant, so that equation (7) must hold throughout the bar. The complementary energy
ltc of the bar is then [2J (LB2k2 j2G)TI c where

TIc =t (lVt/J1 2
- 2et/J) dA (9)

Further, if we consider the class of stress functions t/J0 which satisfy equations (3H5), the
elastic theorem of minimum complementary states that among all functions of t/J0 the
actual solution satisfying equations (7) and (8) minimizes TIc.

We assume throughout that e is a monotonically non-decreasing function of time. It
has been shown [IJ that at any point P in A, if t/J satisfies the equality in equation (6) for
some angle 80 , then t/J is constant in time for all e > eo. Under these conditions, it follows
as a special case of a theorem proved in [2J for an elastic-perfectly-plastic material that
(a) TIc is still given by (9) and (b), if the class of statically admissible stress functions is
further restricted by (6), then the principle of minimum complementary energy is still valid. *

This minimum principle is the basis of the numerical method presented in the following
section. A function t/J which depends upon several parameters t/Jkis defined so that equations
(4) and (5) are automatically satisfied for any choice of t/Jk, and the t/Jk are then chosen so
as to minimize TIc subject to equation (6).

For an elastic material, it is well known that any approximate solution obtained in
this way can be used to obtain a lower bound on the torque necessary to produce a given
angle of twist. However, as is pointed out in Appendix A, this interpretation is not neces
sarily valid for the elastic-perfectly-plastic material considered here.

METHOD OF SOLUTION

Various methods can be used to choose the nature of the dependence of t/J upon its
parameters. A usual technique is to choose them as the coefficients of a complete set of
functions such as a Fourier series, and then to consider a finite subset. This approach has a
great theoretical advantage in that it may be possible to prove that the approximate
solution can be made arbitrarily close to the exact solution by choosing a sufficient number
of parameters. However, for an irregularly shaped boundary, automatic satisfaction of the
boundary condition (5) may be far from trivial. Also, as will be discussed shortly, special
problems are posed by a constrained minimization problem [t/J must satisfy equation (6)J.

A second method, recently used by Koopman and Lance [4] in a plasticity problem,
is to begin by replacing the continuous region by a finite array of mesh points, and the

• This fact was first conjectured by Haar·and von Karman (3].
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differential equations by finite difference equations. The values of t/J at the interior mesh
points are taken as the parameters t/Jk' Applied to the present situation, equation (9) for
evaluating ITe would be replaced by a finite integration formula to yield a value IT~. Also,
the inequality constraint (6) would be replaced by finite difference approximations. Alter
natively, we could take advantage of the Nadai analogy [5, 2] and replace (6) by

t/Jk :::; lfik (10)

where lfik are the easily determined values of the fully plastic stress function at the mesh
points.

However, both of the above methods are open to the serious objection that in practice
they may not yield valid answers. The minimum principle is known to be valid only if the
approximate solution satisfies (6) at every point of A, whereas in either of the schemes
mentioned, (6) can be enforced only over a finite subset of A. This objection might not be
serious if it were not for the weak continuity requirements on t/J imposed by equation (4).
Thus, the derivatives oft/J which are required for (6) may not even be continuous. Although
a Fourier series can give, in a total sense, a good approximation to a discontinuous func
tion, the approximation may be very poor sufficiently close to the discontinuity. Figure 1
illustrates qualitatively what may happen. If (6) is checked at points A and C it will appear

D

'A

FIG. 1. Fourier series representation of a discontinuous function.

to be satisfied but will, in fact be drastically violated at B so that the function is far from
statically admissible. Even if it is checked at D, it would appear that division by a factor
only slightly greater than 1 should result in a statically admissible field, whereas in fact (6)
would still be badly violated at B. On the other hand, if it is checked at B, the necessary
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division factor will be much larger than 1, (6) will be strongly satisfied everywhere else,
and the resulting lower bound will almost certainly be a poor one.

The same objection applies to the second method, although not so seriously since (6)
can be replaced by (10) which involves only a continuous function. However, the continuity
requirements (4) pose a further difficulty in that it is not easy even to define continuity of a
function specified only over a finite set of points.

The method used in the present paper was first used by Herrmann [6J in a purely elastic
problem. It may be considered as a special case of finite difference approach, chosen in such
a way as to eliminate the difficulties of the general case. Briefly, the region A is replaced by a
set of triangles, together with such curvilinear regions as may be left over at the boundary.
At each vertex in the interior of A ljJ is assigned a parameter value ljJb at each boundary
vertex ljJ is assigned the value 0, ljJ is defined to be linear in the interior of each triangle,
and ljJ is identically zero in each left over curvilinear region.

Evidently, for any set of values of the parameters ljJk' the function ljJ is uniquely defined.
Further, it obviously satisfies the continuity requirements (4) rigorously in A, and the boun
dary conditions (5) everywhere on C. Also, since ljJ is linear within each triangle its gradient is
a constant and satisfaction of (6) at every point of the triangle is equivalent to a single quad
ratic inequality in terms of the parameters ljJk of its three vertices. Finally, Ilc can be evalu
ated in closed form so that no approximate integration scheme is needed. Therefore, the
minimum principle is rigorously valid and any approximate solution so obtained will
provide an upper bound on Il c for the actual solution.

TECHNIQUE OF SOLUTION

We divide the cross section of the cylinder into m triangles with n interior vertices and
nb boundary vertices. Consider an arbitrary triangle and let its vertices be temporarily
denoted by the subscripts, i,j, k. Then, in that triangle, ljJ(x, y) is the linear function

ljJ(x, y) = (xoljJ/ox +yoljJ/oy+ D)

where

ljJi Yi Xi ljJi
oljJ I

ljJj
oljJ 1

ljJjox = ~ Yj -=- xjoy ~

ljJk Yk xk ljJk

Xi Yi ljJl Xi Yi
1

ljJ2 ~=D= xj Yj xj Yj
~

Xk Yk ljJ3 Xk Yk

(11)

(12)

Since ljJ is linear, its derivatives are constant, and hence equation (9) is trivially integrated,
in each triangle. Summing over the m triangles, we obtain

(13)
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The problem is to minimize (13) subject to the m inequalities
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1= 1, ... ,m (14)

where all quantities are defined in terms of the coordinates and parameter values of the
triangle vertices by equations (12).

This problem has been programmed for an IBM 7040 using FORTRAN IV and a
SHARE Library program [7] entitled "Sequential Unconstrained Minimization Tech
nique" (SUMT). The method was first suggested by Carroll [8] ; its validity was proved by
Fiacco and McCormick [9] who also wrote the SHARE program. The essential idea is as
follows:

We define an auxiliary "primal" function by

m

P(\jI, r) = TIc + r L Ijg/
1= 1

(15)

where \jI == (t/J 1" •• ,t/Jn) is a vector with n components. A "feasible point" is a vector \jI
which satisfies all of the strict inequalities (14), and the "feasible domain" is the totality
of feasible points. For the particular problem under consideration it is evident that the
feasible domain is strictly convex and contains the point \jI = 0, and that TIc is a strictly
convex function of\jl. Further, P is bounded from below and finite at any point Q in the
feasible domain, but tends to plus infinity as Qtends to the boundary ofthe feasible domain.

For any given value ofr, it follows from the above that P will have a unique minimum

P(r) = P[\jI(r), r] (16)

at a point \jI in the feasible domain. Further, it can be shown [9] that as r tends to zero,
P(r) tends to the desired minimum value of TIc and \jI(r) tends to the desired vector which
minimizes (13) subject to (14).

A program EPTl was written to solve the Elastic-Plastic Torsion problem for any
simply connected cross section. The user must write a short subroutine to describe the
cross section and must provide a few data cards giving an initial subdivision into triangles
and various accuracy standards. The program first solves the elastic problem for the given
triangle-approximation, then subdivides each triangle one or more times for a more
accurate result. Next the fully plastic problem is solved, and then elastic-plastic problems
for given increments of () until the torque is sufficiently close to the fully plastic value. All
the above solutions are obtained by calling upon the SUMT program.

Details ofthe computer program, including a listing and analysis ofoutput are described
in Appendix B. This appendix has been bound separately as DOMIIT-Report 1-33A,
Illinois Institute of Technology and may be obtained from the author on request. At the
same time, the interested reader should request Ref. [7] either from the SHARE Library or
from Dr. G. P. McCormick at the Research Analysis Corporation, McLean, Virginia.

EXAMPLES

To test the program, four examples were considered as shown in Fig. 2. The figure also
illustrates the extent to which symmetry was used and the initial division into 3 triangles.
After a first estimate of the elastic solution was obtained, each triangle was divided into
four similar triangles by joining the midpoints of each side. This process was repeated
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until eventually 48 triangles were obtained for the circle, oval, and cruciform, and 192 for
the triangle.

(0) (b)

(e)

(d)

FIG. 2. Cross-sections studied, symmetry assumed, initial division into 3 triangles: (al equilateral
triangle; (b) circle; (c) Sokolovsky oval; (d) cruciform.

The equilateral triangle was solved only for the fully elastic solution. Table 1 indicates
how the values ofthe stress function and the magnitude ofthe gradient vary with the number
of triangles at the indicated points in Fig. 2(a). Also shown is the computed torque and the

TABLE I. VALUES OF STRESS FUNCTION AND GRADIENT AT TYPICAL POINTS SHOWN IN FIG. 2
(Ii = 1-0)

Point 2 3 4 5 6

Triangles Stress function x 10- 4

3 8333 5208 4166 0 1389 1389
12 8329 5611 5722 0 2135 1350
48 8332 5698 6118 0 2369 1391

192 8334 5697 6217 0 2422 1396
Exact 8333 5697 6250 0 2440 1399

Gradient magnitude x 10- 4

3 1667 1667 1667 1667 1667 1667
12 751 1456 1462 2907 2934 1234
48 365 1321 1535 3381 2336 1441

192 181 1210 1489 3578 2648 1337
Exact 181 1220 1502 3640 2546 1372

Torque x 10- 5 Minutes

3 1202 0·04
12 1514 0·84
48 1596 3·96

192 1617 46·08
Exact 1624
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machine running time in minutes. The exact solution is well known (cf.[1O]) and is shown
for comparison. The values of the stress function and the torque are quite reasonably
approximated with 48 triangles; although the gradient values are less accurate, the location
of maximum gradient magnitude is correctly picked out. Because of the tremendous
increase in machine time necessary to solve for 192 triangles, all other examples were
stopped with 48.

Figure 3 shows the stress function for the circle for various angles of twist. The exact
solution [10]

ljJ = (0/4)(1 - r2
)

ljJ = 1-1/0-0r2/4

ljJ = l-r

°:s; r :s; 2/0

2/0 :s; r :s; 1

(17)

is also shown. The double curves indicate that the approximate solution is not strictly
a function of r only.

B=C1J

_ Exact

~ Approximate

FIG. 3. Elastic-plastic stress function for circle.

The third example, the Sokolovsky oval [10, 11], is one of the few nontrivial sections
for which the exact elastic-plastic solution is known. Figure 4 shows the exact and approx
imate elastic-plastic boundaries for various angles of twist. The fact that a triangle jumps
as a unit from the elastic to the plastic state is responsible for the rather erratic approximate
boundaries, but despite this fact there is reasonable qualitative agreement.

The final example of a cruciform cylinder indicates that reentrant corners pose no
difficulties. Figure 5 shows the motion of the (approximate) elastic-plastic boundary.
Although an exact solution is not known, the results are at least qualitatively correct in
that plastic regions begin at the reentrant corners (but only for a finite angle of twist) and
grow out; at a greater angle of twist additional plastic regions start at the ends of the legs;
and for large angles of twist the elastic region appears to be shrinking down on the lines
of discontinuity of the fully plastic solution.
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- Exact
- - - Appraximate

,
"-

"-

'~ 8=3.4

,,,,
'- --

, ~=5.9
'------ -----,

\
\-,

8=12.3 \

------ -

FIG. 4. Elastic-plastic boundaries for Sokolovsky oval.

.8=2.32 48=7.84

"'8=3.49 .8=11.77

A8= 5.23 ~8=17.66
FIG. 5. Growth of plastic region for cruciform.
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APPENDIX A

DIRECT PROOF OF MINIMUM PRINCIPLE

Although we are giving a direct prooffor the particular case of torsion, it is convenient
to begin with the general definition of the complementary energy. Let V be a three dimen
sional region whose surface S is composed ofa part SD on which in each ofthree independent
directions either the displacement is prescribed or the traction is zero, and a part Sr on
which the roles of displacements and tractions are reversed. Then the complementary
energy is defined by

(At)

(A4)

where T is the traction vector, u the displacement vector, and

Uc = fE :d«J. (A2)

For the torsion problem, the only non-vanishing stresses are (Ta3 = (T3a where Greek
subscripts have the range 1,2. Denoting the corresponding engineering strains by Ya' we
may write the constitutive equations for an elastic-perfectly-plastic material in the form

GYa = cTa3+A.(Ta3 (A3)

where A. is a non-negative scalar which is zero except during plastic flow. It is known [1]
that once a material point of a simply connected cylinder becomes plastic, the stresses
remain constant under monotonic torque. Therefore (A3) can be integrated with respect
to time to yield

GYa = (1+A.)(Ta3

where A. is zero in the elastic range and non-negative if the point is plastic.
Substituting (A4) into (A2) we can write the result as

Uc = (l/G)f(l +A.)(Ta3 d(Ta3 = (Ta3(Ta3/2G (AS)

The last step in (AS) follows from the facts that A. is zero in the elastic range and d(Ta3 vanishes
when the point is plastic. Therefore, for the torsion problem, the complementary energy is

(A6)
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(A7)

(A8)

(A9)

To show that the actual solution minimizes no we define n~ analogously to (A6) for any
statically admissible stress state and form the difference

8nc == n~ - nc = (l/2G)L (0'230'23 - O'dTa3) dV

-f (T - TO) • u dS.
Sn

Since the second integrand in (A7) vanishes on ST, we may equally well take the integral
over the entire surface. We can then apply the principle of virtual work to obtain

f (T-TO).udS = f (0'23-O'a3)Ya dV
Sn v

Next, we substitute (A8) into (A7) and use (A4) to obtain

8nc = (1/G) Iv [-!<0'23 - O'a3)(0'23 - O'a3) +AO'a3(O'a3 - 0'23)] d V

At an elastic point Avanishes, and at a plastic point we must have Anon-negative and

(A10)

so that the second term in (A9) is non-negative at every point. Since the first term is the sum
of squares, we have shown that n~ ~ nc, QED.

It remains to show that the expressions (A6) and (9) for the complementary energy are
equivalent. For the torsion problem, SD is the end x3 = L of the cylinder where T3 vanishes
and

U 1 = -rxLx2 (All)

Therefore, introducing the stress function from equation (3) and converting to the dimen
sionless variables defined in the first section, we may write

f T. u dS = f O'a3UadS = - (k 2B2 L(})/2G f x. V\jI dA. (AI2)
Sn Sn A

Further, since O'a3 is independent of X3 we may write

Iv O'a30'a3 dV = k2B2Lt IVl/J1 2 dA. (A13)

Finally, integrating the last integral in (AI2) by parts by means of the divergence theorem,
making use of the boundary condition (5), and substituting (AI2) and (A13) into (A6), we
obtain

nc = (k 2 B2LI2G)t [IVl/J1 2 -20l/J] dA

in agreement with equation (9).
The torque applied to the end of the bar is readily computed to be

T = 2kB3 Ll/J dA.

(AI4)

(AI5)
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(AI6)

Also, we can integrate (A14) by parts and use the boundary condition (5) to obtain

nc = - (k 2B2L/2G)t (V2 t/J +2fJ)t/J dA.

For a fully elastic bar, it then follows from (7) that the torque is proportional to -no so
that an upper bound on nc can immediately be interpreted as a lower bound on T. How
ever, if any part of the bar is plastic, equation (7) is not applicable, and hence the bound
cannot be so interpreted.

(Received 29 March 1967; revised 31 May 1967)

Resume-Pour une region II assemblage simple, il est demontre que Ie probleme de determiner la fonction de
tension elastique plastique equivaut II celui de minimiser l'energie complementaire soumise aux contraintes
d'inegalite necessitees par I'etat de la limite d'elasticite. Vne methode est proposee pour obtenir une valeur
approximative de ce minimum dans laquelle la section est representee par une valeur approximative obtenue
II partir d'un nombre fini de triangles et I'on suppose une fonction de tension lineaire pour chaque triangle. Ce
probleme d'approximation est ensuite resolu au moyen d'un programme par machine II calculer recemment
rendu disponible pour la solution de problemes de minimisation de contraintes non lineaires.

Zusammenfassung-Es wird gezeigt, dass fiir einen verbundenen Bereich das Problem der Bestimmung der
elasto-plastischen Spannungsfunktion dem der Verkleinerung der Komplementarenergie gleichwertig ist sofern
diese den Vngleichheitsbedingungen der Fliessbedingungen folgen. Eine Annaherungsmethode fUr das Minimum
wird vorgeschlagen, wobei der Durchschnitt durch eine endliche Anzahl von Dreiecken bestimmt wird und die
lineare Spannungsfunktion fUr jedes Dreieck angenommen wird. Dies Problem wird dann mittels eines neuerlich
vorhandenen Rechnerprogrammes, fUr die Liisung nichtlinearer Minimisationsprobleme, geliist.

A6cTpan-OKa3blsaeTclI, 'ITO ,lI,nll rrpOCToro CB1I3aHHoro pail.oHa, 3a,lI,a'la 06 orrpe,lI,eneHHH yrrpyro
I1J1aCTH'IecKOil. cilYHKUHH Harrp"lKeHHl 3KBHBaneHTHa MHHHMaJIH3aUHH rronHoil. 3HeprHH npe,lI,MeTa K Hepa
peHCTBy CHn CB1I3H, BbITeKalOmeil. H3 ycnoBHlI Te'leHHlI. CTPOHTCli MeTO,lI, arrrrpOKCHMaUHH TaKoro MHHH
MyMa, B KOTOpOM rrpH6nHlKaeTGli rrorrepe'lHoe ce'leHHe KOHe'lHbIM '!HCnOM TpexyronbHHKOB. TIO,lI,C'lHTbI
saeTcli nHHeil.Hali cilyHKUHlI Harrp"lKeHHl ,lI,nll KalK,lI,OrO TpexyronbHHKa. ,[(aJIee pemaeTcliny rrpH6nHlKeHHYlO
3a,lI,a'ly C rrOMomblO ,lI,OcTyrrHoil. B rrOCne,lI,Hee BpeMli rrporpaMMbI ,lI.J111 C'IeTHbIX MaWHH. 3Ta rrporpaMMa
COCTaBneHa,lI.J1l1 paC'IeTa HenHHeil.Hblx, Hecso6,lI,HbIX MHHHMaJIH3aUHOHHbIX 3a,lI,a'l.


